viernes, 4 de septiembre de 2015

360 Paradoja del cuadrado perdido

Para realizar nuestro experimento necesitamos folios de colores, regla y tijeras.

En primer lugar recortamos cuatro piezas:
Pieza 1: Un triángulo rectángulo de base 8 y altura 5.
Pieza 2: Otro triángulo rectángulo de base 5 y de altura 2.
Pieza 3: Un rectángulo de base 5 y altura 2 al que le faltan 2 cuadrados.
Pieza 4: Otro rectángulo de base 5 y altura 2 al que le faltan 3 cuadrados.

Con las cuatro piezas podemos construir dos figuras con forma de triángulo rectángulo de base 13 y altura 5 pero en uno de los triángulos (figura 2) falta un cuadrado.

Explicación
En realidad las dos figuras que se obtienen con las cuatro piezas no son triángulos rectángulos. Con una regla podemos ver que en los dos casos la supuesta hipotenusa no es una línea recta y que está formada por dos líneas que tienen una pendiente ligeramente distintas. Por superposición podemos ver que las dos piezas con forma de triángulo rectángulo no tienen el mismo ángulo.

Las dos figuras formadas con las cuatro piezas tienen que tener el mismo área. Si superponemos el primer "triángulo rectángulo" sobre el segundo (al que le falta el cuadrado) vemos que queda sin cubrir una parte. La diferencia no es muy grande pero se corresponde con el área del cuadrado que falta.


No hay comentarios:

Publicar un comentario